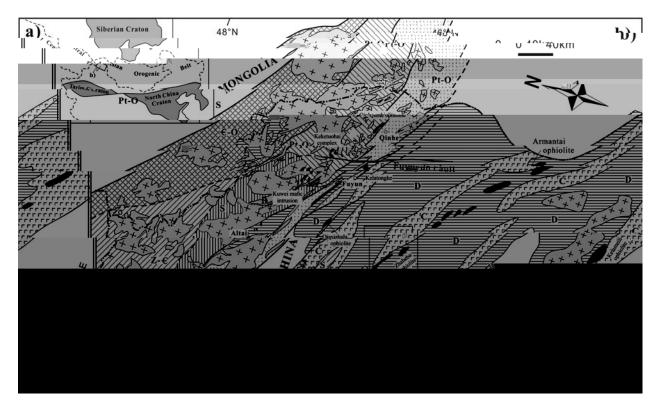
```
e c e
                                   e
                                         a e a
                                                         e c
    e a
                                                    ece (
ea e
                a
                         e
                              e
                                   a
                                          a
      ca
                       e acc e
                                          ce
                                                     e
                                                               a
                                                                   e a e
                ‡,
                                     ‡†, -
                          &
            e e ca e e ca c e ce, e ,100037, a a e a e a e ce, a 210016, e a e e ce ce, ve , ,3684 -5305,
```

(Received 18 2015, accepted 8 a a 2016, first published online 18 2016)

c a e c a e ve a a e ve a e e e a a e a a e e e a a e a a e e e e a a e a a e e e e a a e a a e a e a e a e a a e a e a e a e a a e a e a e a e a e a a e a e a e a e a e a a e a c e e a e a-cea cac, a e e e a e e accee a a-cea cacce a e e. e a e a e, e a e a a a e accee e acc e a e e a e e e e e e - ac e e . a e a e, - e, acc e ce , e a a e c e (), a e a e.


a

1. Intro uct on

c a-ea accea-ece (e. . a et al. 2008, e & e, 200, ea a et al. 2012, a et al. 2012, 2013, acca et al. 2013), c a a a a a a e e cea c a e, e cea c a a ce a e ec c ev e e (, 1 , a et al. 200 , a et al. a e e ce e e -e (e a , 1 ***, ce e (e a , 1 ***, c-a , 1 3, a a e e et al. 2000, e & e, 2003, a et al. 200, ea ce, 2014). a ece e , e & e (2011) c a - e e a . c e a a - c e (), v ca c a c a acc e a. eee e e c e , ea ce (2014) v e -

e e. e - cea e v e - e, - ea ca e e e - e e e c e a c - a e, ac -a c a e a e- c e. a e (,e ö, aa & a, 1 3, a. & e, 2000, e et al. 2002, a et al. 2004, 200 a) (. 1a). e a e e e e a e e a e c, ca e ev e (a *et al.* 200 *a,b*, e , e & a , 2012). ea e a , c e e e a ec e , ev-e a e ave ee e e ve e a e ea , c , , e ea e , a e a a a a e e (a , 1 3, a et al. 2003, a et al. 2003, a et al. 200 a) (.1). a - e ave ee ca e e e e, e e- a e c a ca , e c , e c e

a e, .e. - cea - e

a ec c c a ce e a e
. c , e e e a e e e va , e a , a e a e c e e
a e a e a e c e e a e
acc e v a e e e ea e
e aea (2) ec e e c a ce
ve e- e c a e a e.

2. Reg onal geology, fiel observat ons an petrography

e aea ec e e e e e e aea aa e e e ec e a e e a e e a ec (1, 2). e a c c e e e e, c a e, a a c a e c ava a a ca a e. ve eve a e e e c a e e e e ae ee. e a ee e ve (.3a). e e va e a ea 15 c e a ea 15 c a e c a e e e e e c e e e a c -a e e e e e e ev a a e aacaece ea eece (.2, ee e c). cca a a a e 1 e a e a 1 ca e ee e e e e. v e e a a e e e c a e e e e e e -

ec = 0% e = e,a e (.3, c). a e e e e a cc e e e e e e a e - c e e a e a a cae(40 70%)a c ee(30 50%)a e a e e (5 10%) a cca a v e (.3). cce e a c e e e a c . e e c a e a a ve c ea ae e a e cae a e ca e a e a a ea, eece a caea e e a ea -ec e c a e e ev--ec . e a a c a e c v ca c e e a e a e e ce a ca v e e e e ev a a e e a ()a e aa a ()a e e ev a a ea a () (a et al. 2006). e ea e ev a e e ce a e a v ca ca c e e a aa a c ac e ev a aa. e a v e e e acc e c a ca , c e a c a , v ca ca c c a e (.2). e e e e, - ea a a ca a e e c a ve a e c ava a e ve , a e ca ca ea e a ea . aacae c ava e a ee ec e a a e e e a e a e eca e e c e a a e a-(a ,1 3). e ev a

e 3. (

a e

a e e,

e.() e a

e)

a

e e,

e e

e. (a)

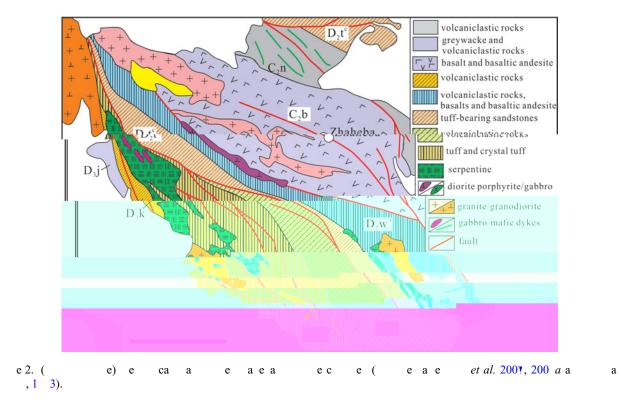
a e e

e e,

e > 0% e e

e e.

e c


e.

e e a

e e

e a

c

. (, c)

a cae, c

е,

e

a cae,

a a e v ca c e e a aaae e ve ae c e e e.

3. Analyt cal proce ures

3.a. Z rcon U-Pb at ng an Hf-O sotope analys s

c e e e a a e a a a e (2013 01, 46° 32 51 , 8° 2 4) a a a a a e a $e(2013 \quad 02,46^{\circ}33\ 2 \quad ,8\ ^{\circ}2\ 36 \quad)c$ ece e ae e e e e . c e a a a ca e c ve a a e c a e ec e . c a e e e a - ce ea cacce. c a a c e e e ce a a e e e e , c ee e e ec ec ec a a a e ec e c a a e a ca e ce ce () a e evea e e a c e . c a e a e c a ca eeaa e eaeaa cve c e a a a ec e (- -) e a e a e a e a ce, ee e ca ve. e ea e a a ca ce e ave ee c e e et al. (2011). e e e e a a e e a e a e a e e a e e a e e a e c a a e c a e e - e - aaa (et al. 2010) a (,2003). e e e e a a e a e e a e 5% c e ce eve. c a e a a a e c a e e e eea aeaaela e e e a a e a a e 2, e ec ve , ava - a e a .// a .ca e. / e . a a ca ce e a e e e et al. (2010a). ea e 18 / 16 a e e e ce a a a δ^{18} va e 5.31‰ (et al. 2010*b*). e ea e e e c a - a - a e c e a e e ea δ^{18} 5.44 ± 0.21 ‰ (2), c c e e e e va e $5.4 \pm 0.2 \%$ (et al. 2013). c e caaae e e eea aeaae3avaaea .// a .ca e. / e .

3.b. M neral analys s

ea c e 20 c e. e e e - a ve e a ca a a a e e e - e a a e a a e 4 a 5 ava a e a .// a .ca e. / e .

3.c. Whole-rock analys s

e- c a - a ace-e e c e e a a e a e ece -, ee cae cece. a ee e e e a a e a a 100e e a a ca ce e e c e et al. (2004). a ca ec e e a e e a 2%. ace e e e e a a e a e e c e 6000 - ce e e c e et al. (2004). 50
a e e e eac a e e e ve
- e e e e a a a c a e
e e e a a a c a e ee e c . e a a -1, -2 a a e e e a a a a -1 a 3, ee e ca a ee e c ce a ea e a e. - aa ca ec ee e a e e a 3 5%. ea a ca e a e e a e 1. c ea e e e e a e e a ve e + 3
ac , a e e a a e c ve a ca e c a e ec e . e c ea e e e e
e e a c a e c ec ec c ec
c ve c e a a a a ec e e (--) a e ae e a a e e-ece , e ece , ee ca e ce ce . e e a e ce e a ee e c e et al. (2004). e ea e 87 / 86 a 143 / 144 a a e c ec e 86 / 88 = 0.11 4 a 146 / 144 = 0.721 , e ec ve . e ea e 87 / 86 ave a e a e e 0. 7 10288 87 a a a 0.70506 -1, a e^{143} /144 ave a e a e e 0.512104 -1 a 0.5126**7**1 -1. e a a ca e a cac ae aa ee ae e a e 2.

4. Analyt cal results

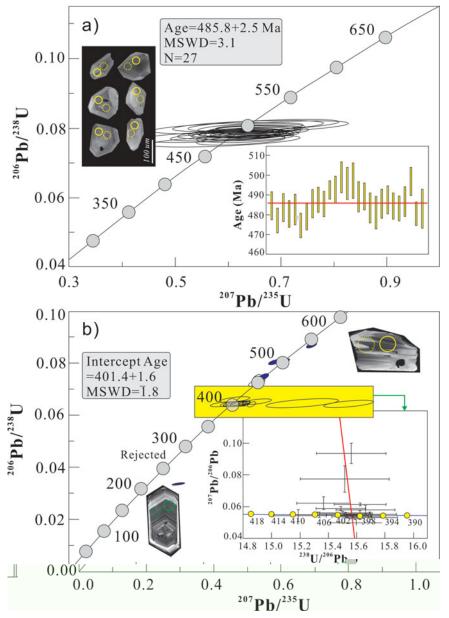
4.a. Z rcon U-Pb ages

<i>3e</i>	
1.21	
0.27 emi	
.33 is: 3.8	
0.08	
3.534 41(.12=5(a2.575	8
Zha	

											. 0
e	518(.12)-5781-()72	251 8 .21.28-60.8(38.	$.50\overset{20}{.2}\overset{32}{-602} .2(0\overset{11}{.2}\overset{4}{.2})$	()-6030.262 ⁰ .2(31	1)-602 ³ .282 ⁰¹ .787)-6280(82 .2(618)	21808) ³ 82 .2(.185	5. ²⁰¹³)-6066	5-642 07-662)-24055783.	8(38.216()661 () y y1<u>\$</u>- 1
_					16.1	(0.4)					gec
					Major elements						c
	38.70	48.20	3 .41	38.62	3 .22	3 .82	3 .05	47.22	46.48	51.27	he
	0.05	0.20	0.05	0.05	0.04	0.05	0.04	0.14	0.12	0.27	77
	0.61	1. 6	1.04	0.67	0. 0	0.74	0. 0	18.28	1 .64	1 .33	ūs
	8.44	4.68	7.87	.36	7.57	7.16	7.84	3.67	3.24	3.8	7
	0.08	0.10	0.11	0.11	0.11	0.0	0.11	0.08	0.07	0.08	7
	38.21	24.5	38.82	37.8	3 .0	3 .31	38.44	10.04	.03	5.8	Ý
	0.12	15.42	0.15	0.14	0.2	0.10				5.47 5 3.534	11(125)

a e c e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-7	2013 01-8	2013 01 1	2013 01 2	2013 01 4
	0.005	0.064	0.008	0.005	0.00	0.003	0.003	0.051	0.044	0.222
	0.021	0.347	0.044	0.042	0.072	0.031	0.033	0.310	0.257	1.450
	0.004	0.047	0.007	0.008	0.011	0.005	0.005	0.04	0.043	0.21
	0.011	0.232	0.036	0.044	0.012	0.034	0.008	0.123	0.0 0	0. 3
a	0.0 0	0.036	0.038	0.037	0.068	0.026	0.025	0.046	0.031	0.067
	0.268	1.710	6.600	1.880	0. 3	0.233	1.150	1.570	0.516	0.1 5
	0.406	0.0 2	0.127	0.112	0.0	0.1	0.054	0.168	0.1 1	0.6 5
	0.046	0.034	0.014	0.028	0.050	0.030	0.010	0.050	0.02	0.130
	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.07	0.066	0.042	0.073
a e	2013 01 5	2013 01 6	2013 01 7	2013 01 8	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
c e			(1)	(1)	(1)	(1)	(1)	(1)	(1)	(2)
					Major elements					
2	4 .17	45.87	48.7	53.1	51. 1	50.40	50.54	50.52	51.22	52.37
2	0.34	0.15	1.40	1.24	1.31	1.70	1.63	1.31	1.17	0.33
2 3	18.	1 .58	16.5	16.1	15. 3	15.87	16.76	15.55	15.48	1 .61
e_2 3	4.52	3.34	7.88	y.11	7.43	.0	.50	.42	7.82	3.44
	0.0	0.08	0.11	0.10	0.11	0.13	0.11	0.14	0.12	0.07
	6.87	7.42	4.80	4.28	4.41	5.8	3.2	6.06	7.14	4.88
a	11.03	12.61	6.22	5.75	6.3	6.75	4.52	7.4	8.26	8. 0
a_2	4.86	7.38	8.72	8.3	8.00	4.52	7.31	4.80	4.08	7.11
2	0.13	0.11	0.3	0.31	0.42	2.04	0.33	1.27	2.03	0.17
2 5	0.04	0.02	0.62	0.62	0.65	0.74	0.6	0.47	0.44	0.04
	3.72	3.26	4.24	2.54	2. 3	2.27	5.14	2.65	1. 3	2.7
	. 7 5 4. 8	.82	. 7 6 .11	.70	.4	.40 6.56	.81 7.64	.67	.68 6.11	.71
#	4. 8 7 5	7.4 81	.11 55	8. 7 0 54	8.42 54	56	41	6.0 7 56	64	7.2 74
#	13	01	33	34	Trace elements (p		41	30	04	!4
	.0	4. 5	1.16	1.12	1.47	.08	40.4	5.2	6.82	5.71
e	0.22	0.135	1.284	1.683	1.316	1. 53	1.034	1.100	0.575	0.62
c	25.0	23.8	18.6	17.5	17.5	7.5	1 .2	25.2	18.	17.0
Č	118	83.7	186	166	172	227	22	254	187	75.7
	34.7	163	60.5	62.6	64.1	116	18.	0.7	203	23.7
	24.2	21.6	26.	23.6	24.6	27.8	28.5	28.0	28.0	16.4
	4.7	175	63.6	50.7	51.4	76.8	27.7	57.3	132	71.1

a e 1. e


a e1.	e									
a e	2013 01	5 2013 01 6	2013 01 7	2013 01 8	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
c e			(1)	(1)	(1)	(1)	(1)	(1)	(1)	(2)
a	3. 7	1.20	3 .60	46.70	47.30	23.40	43.00	25.20	32. 0	6.56

•	e 1	e

a e	2013 01 11	2013 02 1	2013 02 2	2013 03 1	2013 03 6	2013 01 10	04 06	04 24	04 2	03 17
c e	(2)	(2)	(2)	(_1)	(1)	(2)	(1)	(1)	(1)	(1)
		2.0	40.4	Trace elem	ents (ppm)	4	,	,	,	,
	1 .4	36.	42.4	26.0	32.4	17.	/	/	/	/
e	0.3 5	0.153	0.358	1.1 8	0. 47	0.468	12.4	20.5	/	20.2
c	32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	17.7	20.3
	1 4	203	217	337	341	1 5	144	184	214	265
	56.5	44.2	47.8	1 .8	22.2	53.8	158	162	214	265
	34.7	37.5	38.3	23.1	24.8	33.8	20.6	30.	28.	20.2
	66.4	84.6	76.4	25.4	27.1	66.6	8 .1	114	75.5	7.02
	6.4	236.4	256.7	205.4	208.	114.20	/	/	/	/
	48.0	44.1	4 .0	4.	103	44.1	/	/	/	/
a	12.0	11.1	11.2	14.7	13.6	12.0	/	/	/	1 - 2
	0.58	1.420	1.070	3.130	3.270	0.583	4.	18.1	22.0	17.2
	71	1750	5	270	24	686	71 12.2	831	1118	776
	13.0	13.0	13.2	21.1	22.	12.5	13.2	13.2	14.7	20.1
	54.	42.3	41.5	144	154	52.8	243	133	164	151
	1.2	0.847	0.855	11.315	11. 85	1.257	20.2	12.7	21.	12.2
	0.025	0.030	0.027	0.051	0.052	0.028	/	/	/	/
	0.381	0.286	0.328	1.560	1.450	0.360	/	/	/	/
	0.288	1.720	1.030	0.365	0.406	0.336	/	/	/	/
a	117	372	346	825	507	84.3	20.6	22.2	/	26.4
a	10.70	7.840	7.610	26.40	26.80	10.50	30.6	32.2	40.1	26.4
e	23.00	18. 0	18.40	51.50	54.70	22.30	57.8	62.	82.3	52.5
	2.770	2.520	2.510	5.750	6.180	2.670	6. Y	7.84	10.5	6.4
	11.80	11.70	11.60	22.30	24.30	11.60	27.5	31.2	43.1	24.4
	2.540	2.700	2.6 0	4.4 0	4.700	2.370	4.5	5.28	6.8	4.85
	0.8 6	0. 18	0. 70	1.163	1.257	0.883	1.45	1.58	2.07	1.03
	2.480	2.813	2.754	4.14	4.46	2.522	3.56	4.01	5.35	4.23
	0.3 6	0.38	0.3 7	0.612	0.660	0.384	0.4	0.54	0.64	0.63
	2.180	2.150	2.220	3.420	3.680	2.130	2.57	2.77	3.24	3.75
	0.468	0.446	0.444	0.728	0.75	0.468	0.4	0.52	0.5	0.78
	1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.37	1.45	2.25
	0.1 0	0.16	0.175	0.304	0.328	0.1 4	0.1	0.2	0.2	0.34
	1.210	1.050	1.120	1. 60	2.110	1.210	1.25	1.23	1.24	2.13
	0.174	0.164	0.165	0.2 1	0.323	0.173	0.20	0.17	0.17	0.34
	1.3 0	0. 41	1.040	3.2 0	3.510	1.460	5.37	3.27	4.16	3.72
a	0.084	0.062	0.051	0.5 7	0.644	0.07	1.35	0.68	1.16	0.68
	0.151	2.0	1.50	2.75	1.88	0.33	0.12	/ 07	/	21.06
	0.3 4	0.206	0.200	45.20	35.10	0.417	8.13	8.07	4.18	21.06
	1. 0	0.761	0.717	8.860	.2 0	1. 80	4.50	2.63	3.20	.41
	0.500	0.304	0.302	2.830	3.480	0.501	1.7	0.67	1.46	2.5

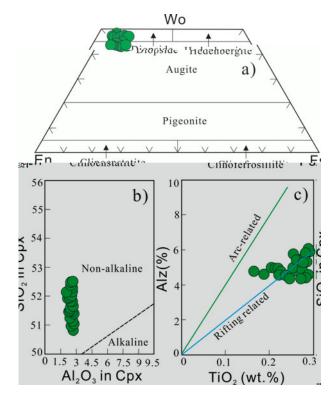
e. e e e, a , a a , a a c a e e, / e e ec a a a e 04 06, 04 26, 04 2 a 04 17 a e et al. (200 a).

a e2	a e 2. c c		e	e a a		e a e a a ea						
a e	;	c e	() ()	87 / 86	87 / 86 (1σ)	(⁸⁷ / 86)	()	()	147 / 144	143 / 144 (1σ)	(143 / 144)	ε (t)
2013 2013 2013 2013 2013 2013 2013	01 3 01 10 03 1 03 2 03 3 03 4	a a (2) a a (2) a a (1) a a (1) a a (1) a a (1)	0.36 3 2 0.58 686 3.13 270 2.87 1320 8.06 516 .65 1480	0.0024 0.0335 0.0063	0.106324(20) 0.10428 (20) 0.105368(43)	0.704255 0.705111	2.4 2.37 4.4 4. 5 5. 7 4.55	11.6 22.3 28.6 36.	0.1235 0.1217 0.1046 0.0 78	0.51283 (40) 0.51280 (43) 0.512533(47) 0.51271 (51) 0.512707(30) 0.512803(53)	0.512486 0.512214 0.512445 0.512450	7.1 1.8 6.3
ϵ $(t) = $ eca c	= 10 000((¹⁴		$(t)/(^{143})$ /144 (t) /1 a.) (t)-	-1), ε (t) a (8	/ ⁸⁶) v	a e	e a a		e aeaae	a a e	

e 4. (e) c a aa c e a e a e a e a e ev a e a e a e a e ce a e a 2σ (ea) eve .

. 4a, = 3.1). 1 3. cc a e eaa e e $e \quad 48 \quad \pm \ 4$ ca ev e ce e e a e e a 1) , acc e (a et al. 2003). e e a eae a ae a c e a e, a 100 200 μ e e e (2) e c

4.b. M neral compos t ons

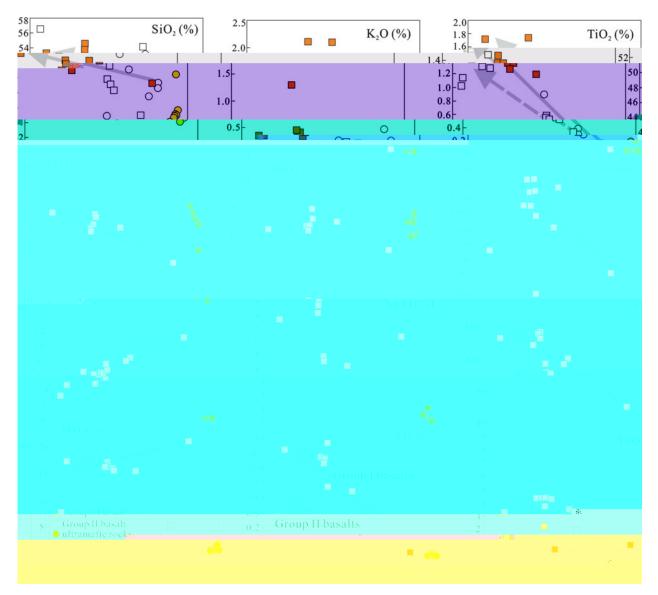

4.b.1. Spinel composition

4.b.2. Pyroxene compositions

4.c. Whole-rock elemental geochem stry

4.c.1. Serpentinites and cumulates

e e e e ave ve () $(>12\%, c c e e e e ve e e - a)a _2(e a 40\%), _2 3(e a 1.0\%), _2 (0.03 0.06\%), a_2 (0.04 0.2\%)a _2(0.04 0.05\%). a e_2 3 c -$

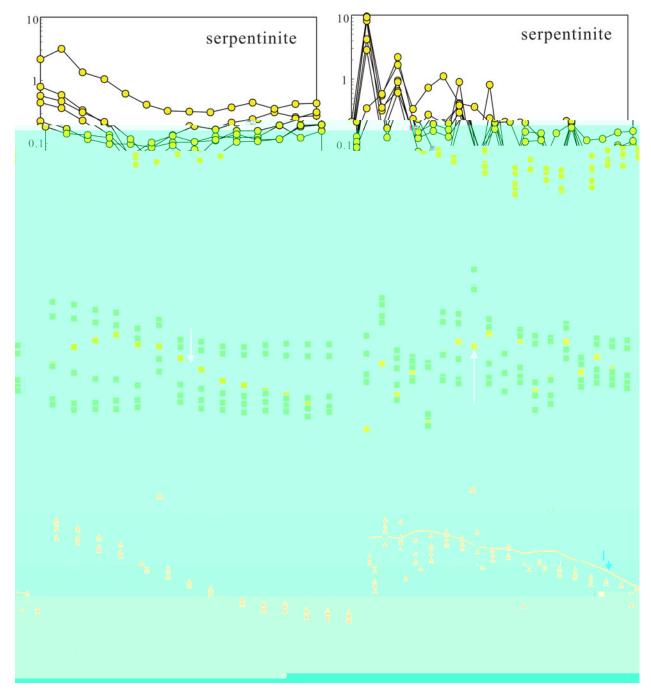

e e a e a a , 8 1 (a e 1). e a e a a , ca c e a e ee 8 1 (a e 1). . e a ee e e ve (. 6). e ave ea ve (3 103) a c e (5 8) (a e 1). e (> 12%) a a₂, ₂ a a c e e c-a e a a e a c a e e e a c e e a ee e (a, a a)a e a a). eve, ce e e a e c e e a ee a ca e a a e a e c , ₂ ₃, e₂ ₃ a ₂, e e e e ee e e e e ca e e e c e e . e e e e aveve a a eea ee e () a - e - e ee e () c e (a e 1). eve, e c e - a e c e- a e a e

7) a ea e a e ec e e (ea ce, 2014, ec e ve a e va e a e & c-, 1 8). e a c c a e ave ₂ a 45.87 % 51.27 %, a a va a e e_{2 3} (3.24 4.68%), _{2 3} (18.3 1 .6%, e ce a e 2013 01-3), a (.54 15.42%), ₂ $(0.12 \ 0.34\%)$, a_2 $(2. 1 \ 7.38\%$, e ce a e

2013 01-3) a ₂ (0.11 0.46%)

a ac a a / c a e ec (a e 1).

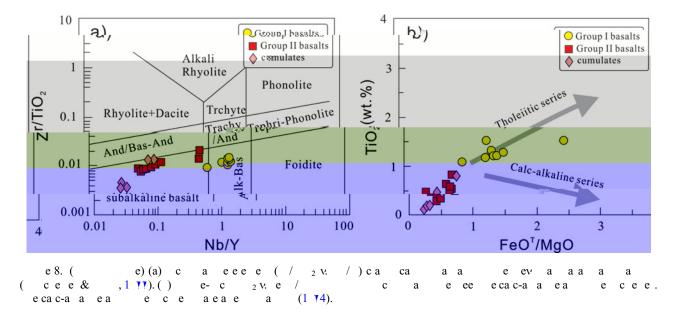
c -

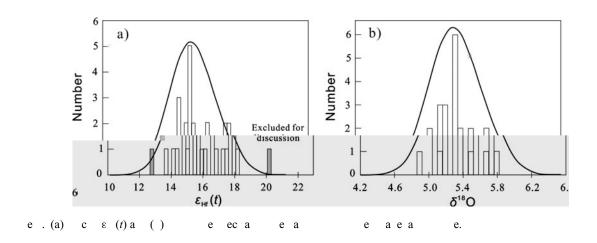

e6. (e) a e va a a a e a a e a e e (.v. ₂, a₂, ₂, ₂, e_{2 3}, _{2 3}, a , , a) (a e e e e et al. 200 a a e a c e e a e e e).

ca c e a e ee e e e a eve e a e a a . 6). e c a e ave va a e a c -5 41 , a a c e- a e a e) e c e ((a/) = 1.3 2.8) a ve a a e (/ = 1.1 2.2). ce e 2013 01-3 a e a e, e ee ec. e e e e - ec . e e ve e () a e c a eee e a-(.!), a ec aecaace e ca e a ve a a e (/ a = 0.2 0.4) va a e ve a a e a, a .

4.c.2. Basalts

e a a a a e c a a ave ₂ a 43.15% 57.65% (e a 52%,

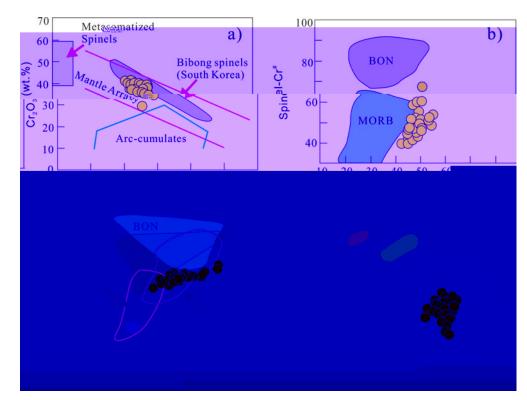

a e 1). va a e e a a e a e c a eee e e e e / v. / c a ca e v e a a ca 1 (1) a 2 (2). a a e e 2 a e, a e a e e ee aa a a e e aa ca-1 a 2 e e e (. 8a). $e \ e \ / \qquad v. \qquad {}_2 \quad a \quad a \quad (\quad . \ 8 \).$ e a e a a , 2, e_{2 3}, 2 5, 2, , a cea e e a a 2 3 ecea e . e 1 a a . e 2 ec ea a a , _{2 5}, ₂, a c ea e ecea . (. 6). e 1 a a ave ea ve 124 205 60 a . 1 a a (a/) e ee 10 a ave 50 a a ave e eva e 30 (a ve 20) a eae ea ve



e $\mathbf{7}$. (e) e- a e a e a e a e- a e c a e ace-ee e e e e a a e e e e a a e a e e e a a e a e a e a e a e a e e $\mathbf{6}$ c $(1\ 8\)$.

4. . Whole-rock Sr-N an z rcon Hf-O sotopes

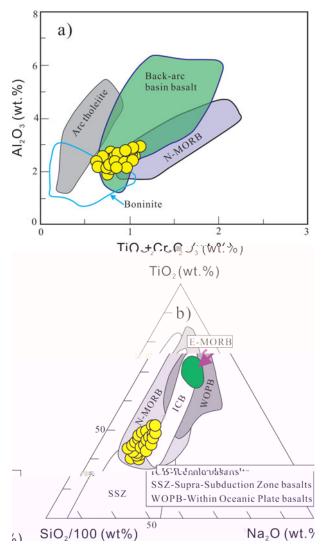
a e cc e e e e a ve a a a e e a e 2. 1 a a a 2 a a ave a cc - . e a a a e e a e $\frac{87}{86}$ a- $\frac{87}{86}$ a $\frac{8$



e c e c a e e (2013 01) c e e (e e a a e a a e a a e a e a e. / e , .// a .ca . a), 3 (= 485 a) a20. e 13 e a e a e 285 a 588 a. e e ϵ (t) (> 16) a e a e a e e ea , a a ec a a a e a e e c e e a ε (t), eaa e ea a 15.7. e ea a ea $e \delta^{18}$ va e a e4. 1‰ 5.**7**3‰, a a a (.). , e e ave e e e сс c a ea δ^{18} c va e 5.37 ± 0.23 % ~400 a c e a ε (t) va e e ee 1.4 a a a e a e 680 a e- a e e a e a 20 e e cave va a e e c e ea e e ce a e (et al. 2008).

5. D scuss on

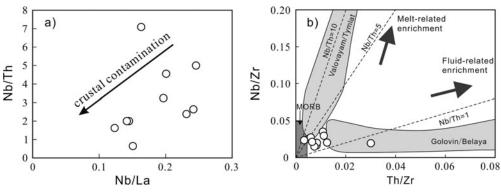
5.a. The n v ual members of the Zhaheba oph ol te

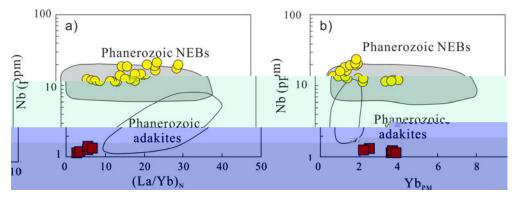

e c a e a e cc e c e eva evcacc, ec a e a a ava eee ace a e a c. 486 a e a 401 a, e ec ve . e a e e c a c e e ev e $(503 \pm 7 a)$ a a ea e ec e aea e a e $(416 \pm 3 \ a)$ e ea e e a e a e c e (a a a 2012, a et al. 200 b, .1). e v ca c ee ce (401 a) a e c a e (486 a) (c e e e e) a e c ea a c e a ev ca c e e ce a e a e a e. e ev e e c a e e v ca c e e ce (, 1 a 3). cc e a e e e ea e e e e e (1), ee ca e v e ee a e, .e. e a a e a ca a a

a e (500 480 a) (a et al. 2003, et al. 2015,), e ev a e a e c c a e (430 400 a) (a et al. 200 b, 2014 a e e e c e e e) a e a e e c - e (370 350 a) (a et al. 2003, et al. 2006).

5.b. Or g n of the serpent n te an cumulates

e a a c c ave c e a e e ve a a e a e e e c a ec c
ca a e a vve a e
e a (e e a , & e, 2002,
et al. 2010

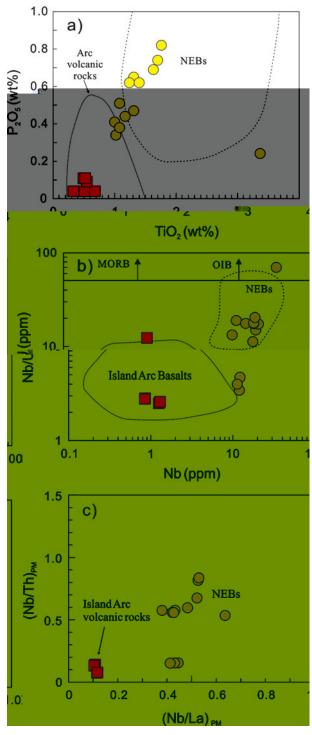



e a c ca e c a c a a e ve e ee a e e ce (- e). e ea e a ec aec a e a a a e e ee e e a e e c a e ce, e a c ee e c e e . e e a, a e 5c, e c e e e c aee--eae e . e $_2$ $_3$ v. aa,a eaa e c e e e ve a a ea e ee a ac -a c a a a (.11a). e $_{2}/100$ ac e e ve a e ee e e a e (.11). e a c c a e ave ca a e a e a a a e a e e e . c aca a , a c a a e

e e . eve, e e c e a / a a / a (.12a), c e ca c a c a a . e ve, e e a e a ec a a . е a e e c - e a e e a eve, e / a / a a e e e e - e a e (.12). e e e, e a e a ve a a e e c c - e a e ece a e a e . et al. (2002) ave e a e a e a ve a a e e a e a e a e c e e c e c a a e e e e). , e eea (ca e e e a c ae a cea e e e c e c c - e a e a ea a .

5.c. Petrogenes s of the Devon an basalts

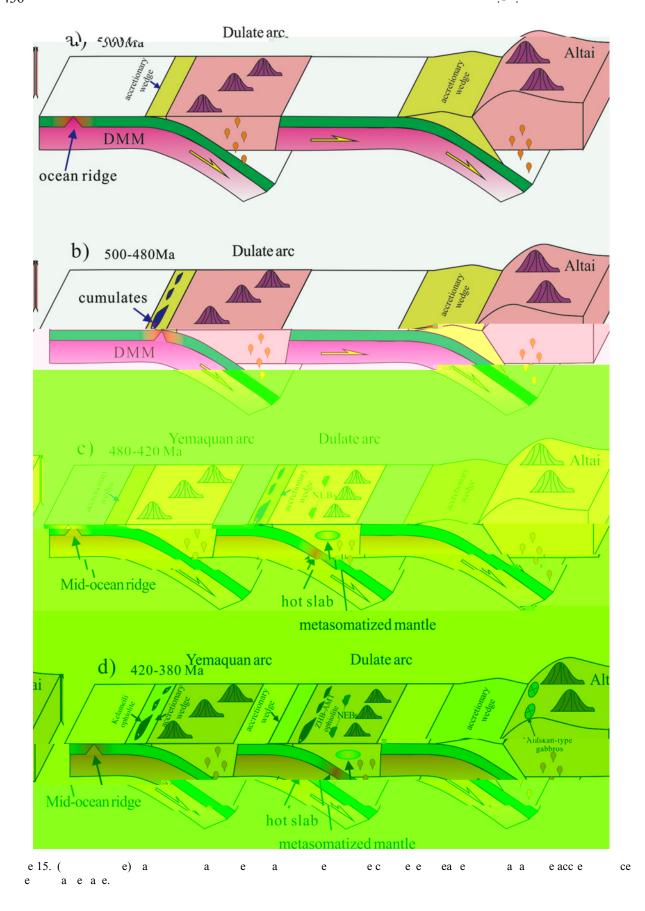
e ece , eaa aeve , .e. a a e 1 a e c ca c-a a ave (11 24 , a a e 2. 1 a a ave a ve 15), $_2$ $_5$ (0.4 0.6%) a / a-1 15, e 60) a va a e(a/) va e, e e a e - c a a
) (ea, ac & ,1 2, - $(11 \ 15,$ a & e c, 2001) (.13). a e a ve a e ce ave ee e acc e c ve e c e ca ea e . (1) a a e e c e a e c e cc e a e e e(e. . a , & a a , 2002), (2) a a e e e c a ea a e a a e (ea, ac & , 1 3, a a et al. 1 6). e a e a a e 2, ea & e a e ec a ee ee e 1 aa. e e ae a a ce c e - ee ce e ve a e (a , & ,2007, a e et al. 011). eve, e 1 ave a 87 / 86 a e (0.704120 0.706133) a ϵ (t) va e 2011). va e (0.704120 0.706133) a e c e (+1.8 + 7.5). e a e e e , e ave e / (3.44 20.4) e a/ (1.51 2.54) a a (e. . e & a , 1 86). ee e, ee c a ac e a a e ce. e a ve, e e a e 1 a e a a e e e e a a e a a e- e a ce a (a a et al. e ve 1 6, e e, 1 6). a e e a e $a\ a\ e\ c$ e e e e e a e ea e eac e a e e e e a e a -е се ce(& e c, 2000). e e e a a a e a a e (ea, ac e e 1, 1, 2, a a et al. 1 6). a et al. (2008) e e ev a a a e a e



a e a. e 1 ave va ϵ (t) (1.8 7.5) a (87 /86) (0.704120 0.706133) va e, c cae a e ce a c a ee ee (ae2). eeave ε (t) va e a (87 /86) a cae a c a aea. e e e a a ca a a . , e 1 a a a e e e ve a a a e a a ea e e ev ea ae a a e e e a a c e e ea e c e a e a e e e ca a c a aea. e 2 a a ave c ve 2, a e c e , a / a (< 0.3), / a e / a (. 8), e ec e e a a a e ce a - e ea e a / e e ve a a e e ce a (a e, & a e , 1 1, e , 2002). ce a a e ea e a c a a . e e a , e 2 a a ave (/) (0.7 1.0), (a/ a) (0.1 0.2) a / (0.6 1.0) a , ca e a e ce e 2 a a a a a a a e e a e cea c c e a-(a & c , 1 6). a e , e 2 a a ave $_2$ $_5$ c e a / a (/) a (a e 1, .14). e a e e ca a acv cac c

(.14)., e 2 a a e ve e a a e e ea e e e ev e a a c e 2 aa ae eee e 1 a eac e. e e e va ca e a e aeac ec c e , c c e е ее .

5. . Impl cat ons for the Palaeozo c accret on process n eastern Junggar


c e e ea e a, e (416 a, et al. 2014, e e a e ee .e. e ea e a et al. 2015), a e a a a e (503 485 a, a et al. 2003, et al. 2015, e (400 a) (.1). cc a e e e a c e a e c e e - a a a e a e e (et al. 2014), e e e e - cea e a e a eae e . еесе a e e va a e a a ev a v ca c e e e ce a e ea e a e e e -ve e ec c e , c a- cea c a c, ea , acc e a e e, - cea ee - ea c (et al. 2007, 200 a,b, a et al. 200 a). ev e a e ec c e a a ca e e e a a-cea c a a c (a et al. 200 b). cc

e 14. (e) (a) 2 5 ve 2 a a . () / ve a a . (c) (/) ve (/ a) a-a a . e a c v ca c c a -e c e a c a a () a e e a , ac & (1 2) a c a et al. (1 5), e ec ve .

 $e \;. \qquad e \quad e \quad a \quad , \quad e \, a \, e \qquad e \quad a$ a e e a e a e a e a 460 375 a a ea a c. 400 a (a et al. 2006, 200, et al. 2007, a et al. 2007, et al. 2008, 200, a et al. 2012, e et al. e e a ca - e a e ea e , a e- c a c e e a ee a ee a a a e ve ec a e c (e & a , v ve e 2002, a et al. 200). e ev a a a acca - e a e ae e ee a a c ea a acaca e e e a e a a c e (e et al. 2015). e e e e (ee ec 5.c), e e c e 1 a a a e ca a c- a e 2 1, 15). et al. (2007, 200 b) e a - e e e e a , c acc a e a e cc e . a e a e c e, a e ea c c a e -e c eaa c ea ec c a e a e e e (et al. 2008). e a ec c a e ave ee e e e (e, ee e & e e, 1 1, a, a & c , 2007, a et al. 2013). ec ce aca e e ec c ev ea e a e a e (.15). (1) a a e (c. 500 a), e a ae a cea ce ee a a c. a e ea e e a a c. e , a e cea c c e a a e a e cea c a c a acc e a e e e e (. 15a). e a e e, e a a e e a e, a eve a a c a a caceac-aeae e e a e. a e a a ea v c a (500 480 a), e e e a cae e a e a e c e (3) a e v c a a 420 a), e - e (458 a, 2015) e e a-cea c a c. e e eaa ca e ca -e ce aa cava (440 a, e et al. 2014) e e e . e e ce aa ee eeae aae e a a e e e ev e a a a c e e ea e (.15c). e a e e, a e a-cea c c e a e , a a e a- cea c a c a

e .

6. Conclus ons

a a e e a a-cea cacce a e e

e a cea. e ea e a ca a e cacce a e c e c

Supplementary mater al

(2011 06 03-01).

ve e e a a e a a c e, ea e v .// . . /10.101 / 0016 / 56816000042.

References

, . 1 4. a ac e a e e e v e e c a e a . ev e a e e a . Chemical Geology 113, 1 1 204. , . . & , . . 2001. e a e e c e a a ca a a c c . Journal of Petrology 42, 227 302. e e e e e e c e v ca c a c . e c e ca ev e ce e . Lithos 97, 271 88. 2002. e e e e e e c e e c e e , ev e . Geology 30, 707 10. **30**, 707 10. a e a . Earth Accretionary Systems in Space and Time (e . . a & e), . 1 36. e ca ce , ec a ca . 318. , . & , . . 2002. e c e ca a c e e e e a a a c c e a e e a a e ec c ca-. Geological Magazine 139, 1 13. . Geological Magazine 139, 1 13. , .1 3. e e a c a c a -e e . c cea c a ea , c e a a , a a c , ea e , a ea . Geological Society of America Bulletin 105, 115 31. , . . 1 👣 . Ophiolites. e . ee a, 220 .
, . . & , . . 1 3. . e e .
e a e a e e a a e e c e e e a v ca c a c. Geology 21, 547 50. , . ., , . . & , . . 1 2. e e c e v ca e -e a a a a ea e a ca a veve . Journal of Geological Society, London 149, 56 , . . . & , . 184. a eaae-eec ca a aaae-ee e a aa a cae ava. Contributions to Mineralogy and Petrology **86**, 54 **1**6. , .& , .2011. e e e a ec c. e c e ca a ec c e ac e cea c e e. Geological Society of America Bulletin 123, 387 411. , . . & , . . . 2015. e a e e c e a e a a a e, a a ec c ca ce . Chinese Journal of Geology **50**, 140 54 (e e a ac).
, . & , . 2000. e c v e
e e e e ea / a a e ea). ev e ce
e e a a ec c ev e cea c e e. Contributions to Mineralogy and Petrology 140, 283 5. , ., . , . . & , . 1 1. a a eve e e e a ec e , ce a - e a a e e . *Lithos* 27, 25

```
Geological Bulletin of China 30, 1508 13 ( e e
  a ac).
a a ava.a e e e ve a a e e e e a-
  a e a e ? Geochimica et Cosmochimica
Acta 75, 504 12.
 e e . Nature 410, 677 81.

, ., , . & , . 2002. a e

e e ea a e e ( c c cea ) a a

e e e c . Chemical Geology 182,
  , . . & , . . 1 6. ce c a ace-
c e ve ve c a e aceee e
a a a a a a ea a a , a a ce c
        ec . Journal of Geophysical Research: Solid
Earth (1978–2012) 101, 11831 .
, . & , . 2000. c ea a c a a -
 -e c e a a -a a e a c a . e 2.7 a c -e e a a e a e e c - c e e e e e , e v ce. Contributions to Mineralogy
and Petrology 139, 208 26.
  , . , . ., , . ., , . & , . 2012.
a a e ace e a e a a a e
- - c a eev e ce e a a e a ea e a, a . Geological Bul-
letin of China 31, 1267 78 ( e e
a ac).
sion) 59, 2213 22.
 e a a e c e a c e a e a e c. Transactions of the Royal Society of
Edinburgh: Earth Sciences 91, 181 3.

, . . & , . . 1 0. a e cae c e a a c c e a e ,
 e a a . Journal of Petrology 31, 67 71.
e. Earth
a ac).
 , . ., , . . & , . 2001.
ac c ce a a c e. a
              a cae ve, - ea e
e ca
               ve c .Journal of Petrology 42,
 C
655 71.
                    a ee-
c-e.
 , . 1 6. a
Nature 380, 237 40.
e ec e a e e a e e ac ve e c . e e c e . Tectono-
physics 326, 255 68.
e 850 a a a a a e c e a ev e ce - c a e
```

a e- c e c e . *Lithos* **114**, 1 15.

```
225 31.
 , . .,
 and Geoanalytical Research 34, 117 34.
a e e e ce c ea a a a e . Chinese Science Bulletin 58,
 4647 54.

, .& , .200 . ec c e c e a e a e e e . Lithos 113, 274 1.
c e a ace e e a a e e a e e e . Chinese Science Bulletin 55, 1535 46.
    , . . 2003. User's Manual for Isoplot 3.00: A
  Geochronological Toolkit for Microsoft Excel. e e-
  e e c e e ec a ca 4,
 73
 a- c e ec cev e a .

Gondwana Research, e e 6 a 2015. .

10.1016/. .2015.04.004.

, .1 74. ca c c e e a a c a
ac vec e a a . American Journal of Science
 274, 32 355.
  , ., ., , .& , .1 5. ac -a c a e e a a e e
 (ea e e a). Geology 23, 851 4.
, . 1 8 . Structure of Ophiolites and Dynamics
 of Oceanic Lithosphere. ec, e e e a .
e ca e c e, 367 .
. . 1 7. a e e a e e ac ce e
e ea cea e . ev e ce a a e e .
 Journal of Petrology 38, 1047 74.
 a ac).
 & , . . 200 b. c ve a e a e a a. Acta Petrologica Sinica 25, 1484 1 ( e e
 a ac).
 a, a . Acta Petrologica Sinica 23, 1627
 34 \, (\qquad \quad e \, e \qquad \qquad a \quad ac \, ).
 . Proceedings of the Ocean Drilling Program, Sci-
 entific Results, vol. 176 (e . . a a , . . . c ,
  .. e & .. e e ), .1 60. e e a-
   , e a .
```

```
, . ., , . ., , . & , . . 2008.
c ve e e - c c, e - a c a e
 a e - e e a e a e a
 ca ce. Chinese Science Bulletin 14, 2186 1.
    e c a ec c e eva ce e a a c e e e c ea. Lithos 117 1 8 208
        ea. Lithos 117, 1 8 208.
e a c -acc e c e , e e a ec c e c e . Journal of Asian Earth

Sciences 30, 666 5
Sciences 30, 666 5.
 , . . 2008. e c e ca e cea c
a a a ca e c a ca a
e ea c c ea cea c c . Lithos 100, 14 48.
 , . . 2014. eee e e -
 e . Elements 10, 101 8.
 Mineralogy and Petrology 141, 36 52.
 Gondwana Research 24, 3 2 411.
 Journal of Petrology 37, 6 3 126.
 e c , e c e ca e a c ea c ea c
  a. Precambrian Research 231, 301 24.
 . & , .2012. e e e e c c-
c e e a c a e
ca a a a e . Precambrian
Research 192–195, 1 0 208.
  , . ., , . .& , .1 1. - e ce e ace e e c
  e ce e ace e e c c e a a . Philosophical Transactions of the Royal
Society of London 335, 377 2.
 e e a c ava . Nature 377, 5 5 600.
, . . . , , . . & , . . 1 3.

v e a ec c c a e a a ae c

c a a a. Nature 364, 2 301.
e c e . Lithos 206–207, 234 51.
   . . 2002. c e . Reviews of Geophysics
40, 3-1 3-38.
```

```
a. ea ca e c - c c . Science in China Series D – Earth
Sciences 52, 1345 58.
.528 48. e ca c e , ec a
  , , , .& , .2008. c a c e e e a. e ve acc e a e ea e
 a ae c. Chemical Geology 247, 352 83.
to Mineralogy and Petrology 133, 1 11.
a e ae c e c e a ca e ec c ev a acc e a e . Journal of
Geology 114, 735 51.
 va ve ev e . Earth-Science Reviews 113, 303 41.
c a ee a a ee a e e-e a c eee e . Chemical
Geology 20, 325 43.
, . ., 2002. e e c a e c e - e a e c a e a a a a ec c ev . Journal of Geology 110, 11 3 .
c ve e e e e c a e e a a ec c ca ce. Geology in China
33, 476 86 ( e e a a c).
(a)? Geoscience Frontiers 5, 525 36.
e a c - e a e acc e a e e ecc ev e a a. Journal of Asian Earth
Sciences 32, 102 17.
2013. a e c e acc e a a c a e c c a e.
Gondwana Research 23, 1316 41.
Geological Society, London 161, 33 42.
```

```
e ee a.
  Chemical Geology 242, 22 3 .
     , ., , . ., , . ., , . . & , .2006.

a e a a c a a , ea e a (a)

e c e ca c a ace c a ec c ca .
  Acta Geologica Sinica 80, 254 63 ( e e
       a ac).
 & , . 2003. c a a a a a e e e a ,
   Chinese Science Bulletin 48, 2231 5.
a ca e e e ca e a a e a a e a ca e a ca e a a e a a e a a e a ca e a ca e a ca e a a ca e a a ca e ca e a ca e ca e a ca e ca e a ca e a ca e ca e ca e a ca e a ca e ca e a ca 
                                                                                                                                                                                                                     e
   e ec c e . ca e a e . Journal of Asian
  Earth Sciences 52, 117 33.
     gica Sinica 24, 1054 58 (
                                                                                                                                   e e
 a ac).
, . & , . . 1 86. e ca e a c.
  Annual Review of Earth and Planetary Sciences 14,
```